NACA TN'2606 =

S
(S

DISTRIBUTION STATEMENT A

SPECTRUM OF TURBULENCE IN A CONTRACTING STREAM

NATIONAL ADVISORY COMMITTEE

|
|

Approved for Public Release
Distribution Unlimited

- FOR AERONAUTICS

TECHNICAL NOTE 2606

By H. S. Ribner and M. Tucker

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Reproduced From
Best Available Copy

~—

— o

Washington

January 1952

J 060 22200002

DTIC U/ 7177 INIPEOTED 4

AG moo- [0- 3227

|
J



NATIONAT, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2606

SPECTRUM OF TURBULENCE IN A CONTRACTING STREAM

By H. S. Ribner and M. Tucker
SUMMARY

The spectrum concept is employed to study the selective effect of
a gtream contraction on the longitudinal and lateral turbulent velocity
fluctuations of the stream. By a consideration of the effect of the
stream contraction on a single plane sinusoidal disturbance wave,
mathematically not digsimilar to a triply-periodic disturbance treated
by G. I. Taylor, the effect on the spectrum tensor of the turbulence
and hence on the correlation tensor are determined. ILack of inter-
ference between waves follows from the postulation of a low level of
turbulence; this and the assumption of an inviscid fluid imply neglect
of decay effects. The compressibility of the main stream is taken
into account, but the density fluctuations associated with the tur-
bulence is agsumed to be negligible; this would be the case if the
turbulence originated from wakes and boundary layers in the very low
speed portion of the flow. For an axisymmetric contraction and a
- particular isotropic initial turbulence some explicit results are
obtained. The one-dimensional longitudinal spectrum ls found to be
distorted (as well as reduced in amplitude) with its peak shifted well
to the right of the initial position above the zero of the wave-number
gcale. The selective effect of the contraction on the mean square
longitudinal and lateral components of turbulent velocity is found to
be given uniquely when the initial turbulence is isotropic, regardless
of the detalls of the spectrum. If the initial spectrum is anisotropic,

ag, for instance, that produced by a damping screen, then the selectlve
effect 18 altered. '

In a crude extension, decay effects outside the scope of the
theory are allowed for in first approximation. With this extension,
a comparison with experiment is made of the selective effect on tur-
bulent intensity where the estimated decay effects are comparable with
the contraction effects. The agreement is good for the longitudinal
component, very poor for the lateral component the experimental data
thems lves being in conflict.
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INTRODUCTION

The generation of & wind-tunnel flow is always accompanied by a
certain amount of turbulence; this is one respect in which the flow falls
to gimulate free-flight conditions. Measurements in the tunnel, particu-
larly those sensitive to boundary-layer behavior, are known to be affected
by this turbulence. Accordingly, the tunnel designer attempts to reduce
the intensity to the lowest practicable level. The use of honeycombs and
damping screens in a large low-speed section (settling chamber) followed
by a sharp contraction to the much~higher-speed working section is known
to be effective. The honeycombs and screens located in a low-agpeed
gection reduce the absolute level of the turbulence wlth little drag
penalty; then the relative level is greatly reduced by the large gain
in tunnel speed through the contraction, aside from any effect of the
contraction on the absolute level.

2378

Once the characteristics of honeycombs and screens are known, the
further quantitative estimate of the reduction in turbulence involves a
knowledge of the effect of the tunnel contraction! on the turbulence.

It is known that the longitudinal component of the turbulence is greatly
reduced (in absolute value) by the contraction; the behavior of the
lateral component appears, on the other hand, to vary from no change to
a substantial increase. Prandtl (reference 1) obtained a quantitative »
estimate of the first effect by considering the conservation of energy

for a perturbed longitudinal filament: 1f the initial stream speed

is U, the filament speed U + u, with u<<U, and the final stream speed
“is 11U, then the final filament speed must be 1U + 1-lu; that is, the
contraction reduces the longitudinal perturbation velocity u by the

factor 1~1. For the lateral effect, Prandtl applied conservation of

momentum to a small rotating cylinder of the fluld, with 1ts axis

cross stream, as the fluld traversed the tunnel contraction. He con-

cluded that the lateral perturbation velocity v 1is increased by a

factor 1/_.

Prandtl's considerations on the effect of a stream contraction
were limited, as has been noted, to particular idealized "eddies".
G. I. Taylor later (reference 2) attempted more realism by treating a
mathematically defined model of turbulence which amounted to vortices
in parallelepiped partitions arranged in a regular three-dimensional

1The conglderations of this paper are not limited to a wind-tunnel
contraction: they may be applied to any stream tube of varying cross
gection large compared with the scale of the turbulence. d
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array. The'changes in vorticity on traversing the contraction were

. determined from a theorem based on conservation of circulation for an

invigeid fluid; the corresponding altered turbulent velocity pattern

was then calculated. The final result of the analysis consisted in
expressions for the root mean square longitudinal and lateral turbulent
velocity components u'! and v' downstream of the contraction expressed
as ratios of the corresponding values upstream.

The initial condition of isotropic turbulence (mean values unaffected’
by rotation or reflection of axes) was approximated by specifying the
vortex partitions to be cubical. For this case the reduction in the
longitudinal component u' was found to vary more nearly like 1.5 1~
than the value 1~% suggested by Prandtl. No explicit result wasg
found for the variation of the lateral component, however: +the calcu-
lations contained a free parameter,

Taylor's results for the longitudinal component agreed fairly well
with the experimental data then available, but it is now considered that
the measurements were made too close behind the screens for the screen-
produced turbulence to have been isotropic. On theoretical grounds, the
obJjection to Taylor s theory is threefold: first, the decay processes
of turbulent mixing and viscous dissipation, whlch result in a reduction
of the mean intensity with axial distance in the wind tunnel, are neg-
lected; second, the assumed model of turbulence fails to'exhibit the

-spatial and temporal randomness of actual turbulence; third, no choice

of the parameters in Taylor's model corresponds to isotropy. In a sense
all three objections apply likewisge to Prandtl's results: no model was

- employed in his considerations, and hence no distinctions between the

effects of isotropy and anlisotropy were made.

The second and third objections can be removed by working, not with
a model of turbulence, but instead with a Fourier integral representation
of a random turbulent field. The integral represents a superposition of
plane transverse sinusoldal waves of all wave lengths and with apparently
random phases and planes of polarization. This aggregate of plane waves

_congtitutes the (threefdimensional) spectrum of the turbulence. Only the

gtatistical aspects of this spectrum will be known, not, for example,
the detalled phase relationships. Mean square velocity components may
be obtained by an integral of certain spectrum functions in which the
phase relationships are suppressed; these functions are included in
the "spectrum tensor” (reference 3).

Taylor's concepts may be applied to find the effect of a gtream
contraction on a single plane wave. The effect under the assumptions
is linear; therefore the superposition implied by the Fourier 1ntegral
may be employed to obtaln the contraction effect on a field of turbu-
lence. In particular, if the initial spectrum tensor 1s known the final
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.

spectrum tensor is determined; the initial and final mean square veloclty
components then result from quadratures. Indeed, from the same informa-
tion, changes due to the stream contractlon in correlations of velocity
at different points}may be calculated: use 1s made of the fact that the
correlation tensor 1s an inverse Fourier transform of the spectrum
tensor (reference 3).

Accordingly, the injection of the spectrum polnt of view into
Taylor's original concept of the contraction effect makes possible a
more reallstic calculation of the changes in mean square velocity com-
pohents. In addition, it provides much more detalled information con-
cerning changes in the gtatistical properties of the turbulence; that
is, 1t provides the changes in the spectrum tensor and in the correla-
tion tensor.

The ideas Just outlined are developed in the present paper. The
first section is devoted to an account of turbulent spectrum analysis
in a form gpecially adapted to the analysis of the contraction effect.
In this account, which 1s a generalization of a development in refer-
ence 4, the role of the spectrum tensor is subordinated to that of the
individual Fouriler components (plane waves) in contradistinction to
the customary treatment. This approach has perhaps an auxiliary merit
in providing some better physical insight into the significance of the
gpectrum tensor.

Next the effect of a stream contractlon on a single plane wave is
calculated by an application of Taylor's concepts. The treatment is
slightly more general in that compressibility of the main stream is
allowed for. The density fluctuations associated with the turbulence
are agsumed to be negligible; this would be the case if the turbulence
originated entirely from boundary layers and wakes In the very low
speed portion of the flow. Following Taylor, the problem is linearized
by postulating a sufficiently weak turbulence so that the self-distortion
of the turbulent eddies is small compared with the distortion imposed
by the contraction of the maln stream; this together with the assumption
of an inviscid fluid implies neglect of the decay of the turbulence.

In succeeding sections the spectrum and correlation tensors down-
gtream of the contraction are expressed in terms of the corresponding
initial tensors. TFor the special case of an axisymmetric contraction
and isotropic initial turbulence the ratiocs of the root mean square
longitudinal and lateral velocity fluctuations downstream and upstream
are obtained explicitly in terms of the parameters defining the con-
traction. For a particular subcase where the initial isotroplc spectrum
tensor is gpecified, the corresponding ‘one-dimenslonal' spectrums (as
would be recorded by stationary hot-wire probes) upstream and downstream

2378



8LSZ

3 ]

NACA TN 2606 . : ' . 5

of the contraction are calculated; the specification is such that the
upstream one-dimensional spectrum corresponds to experiment (refér-
ence 5) in a number of cases of isotropic turbulence.

Most of the calculated contraction effects are aménable to experi-
mental checks either directly or indirectly. The available experimental
data, however, are limited to the changes in the root mean square veloc-
lties. A comparison with these experimental data is given with an esti-
mated allowance for decay effects outside the scope of the theory. Design
curves of the changes in the root mean square velocity components neg-
lecting decay are included for engineering purposes.

SPECTRUM ANALYSIS

Repregentation of turbulence by superpdsition of plane sinusoidal
waves. - Suppose 47, 9p, 43 Trepresent the components of velocity in a

" turbulent field; that is, 4y, dp, and 4z vary in an apparently random

marmer in sgpace and time, and the mean values ql = qz = Jz = 0. Sub-

Ject to certain conditions, a snapshot of this field at any instant can
be represented as a set of three-dimensional Fourler integrals

Ao (xy, %5, X3) = Qq(kp, ky, ksz)e 4y dlepdkes,

where & = 1, 2, or 3 and the significance of k;, ky, and kz will be

brought out later., A continuous representation of the turbulent field
is obtained by allowing the Qy to vary with time. ‘

'It will be convenient to abbreviate the Fourier integral td
| ikex
0,(x) = Q (k)e ™ Tat(k) (1=)

and to introduce the companion equation

;QG(E) = 810 f f f qa(gg)e-l—.zd’r (x) (1)

- Q0
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where k = ky, kp, kz; X = X7, Xp, Xz; 4T(x) = dxydx,dxz. The second
equation allows, in principle at least, the coefficients Qi (k) to be
calculated. Mathematically, g (x) and Q(k) are termed three-

dimensional Fourier transforms of each other; use will be made of this
relationship later.

The velocity components ¢, are connected by the condition of con-

tinuity. In many cases of practical interest these turbulent velocities
orliginate from boundary layers and the wakes of obstacles in flows of
low subsonic speed, so that associated density fluctuations may be
ignored; this is still permlssible when the turbulence so produced is
transported by a high-speed stream. Thus the incompressible form of

the continuity equation may be used and the result is

laXNadri

This relation may be written more compactly as

zianka =0 (2)
o

Physical interpretation., - The amplitude components Qq &are com-

plex in general, According to equation (lb), then, the requirement that
the veloclty components ¢, be real implies that Qa(ﬁ£) 1s the complex

conjugate of Qq(k). If corresponding terms for k and -k in equa-
tion (la) are paired their sum is thus equal to the real quantity

2(Re Qy) cos (k'x) - 2(Im Q) sin (k-x) (3)

The Imaginary parts cancel in the pairing, which implies that they con-
tribute nothing to the integral. Expression (3) represents a palr of

plane standing waves, a cosine wave and a sine wave, with normals in
the direction k = (ky, kp, kg), where x = (%, Xp, Xz) is the radius

vector to any point. The vector k is termed the wave-number vector
and its magnitude k simply the wave number; the corresponding wave
length is 2n divided by the wave number. Since k 1s perpendicular
to the wave front, it is sometimes referred to herein as the ‘wave
normal',

The continuity condition, equation (2), states that both the real
part (Re Q) and the imaginary part (Im Q) of the amplitude vector *
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Q=Qq-= (Ql’ Qo Q3) are perpendicular to the wave normal -k; that is,

both waves of expression (3) are transverse. For each wave any one of
the parallel planes containing both the local velocity vector q and
the wave-number vector k (which is perpendicular to Q and hence to
q) is called the plane of polarization. The cosine wave (real part)
and sine wave (imaginary part) may be polarized in different planes in
general the necessary and sufficient condltlon they be polarized in
the same plane is that

Rte RGQZ RSQS , .
In Q) ~ ImQy ImQz - (#)

Equations (1b) are now seen to represent a superposition of plane
sinusoidal waves (Fourier components) with all orientations of the wave-
fronts (all directions of the wave-normal k) and all wave lengths (all
wave numbers k). Fach wave 1ls transverse, “and all planes of polariza-
tion are permitted. For each value of k +there exists a cosine wave
and a sine wave; thelr respective amplitudes and planes of polarization
are different in general. The complex amplitude components QQ(E)

express, in their real and imaginary parts, how the respective ampli-
tudes and planes of polarization vary with the wave-front orientation
and the wave number,

Mean values: the correlation tensor. - Conglder the spatiall
mean value of the product of the velocity component dq &t x and the

velocity component qB' at x'=x+1r as X varies but the separation

r of the two points remains fixed during the averaging process; this
mean value is called a veloclty correlation and is given the symbol
GB(E) There are nine such correlations, corresponding to a =1, 2, 3,

B=1,2, 3. The form R, (r) has been shown to transform like a

second - order tensor and has been designated (sometimes divided by q2)
as the "correlation tensor" (reference 6).

1If the gtatistical properties of the turbulence are independent of
position (homogeneous turbulence) and time-independent, an average at a
given time over all space equals an average at a given point (or pair of
correlated points) over all time; a proof is given in appendix B. If the
gstatigtical properties vary slowly with time the space average will still
approximate a time average over an interval Just long enough to smooth
out the fluctuations.

e —
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form Faﬁ(gj defined by Batchelor (reference 3) as the Fourler transform
of RaB(E)' The form raﬁ(E) is known as the spectrum tensor. The

Fourier transform relations connecting the spectrum tensor and the corre-
lation tensor are summarized as

Papll) = 'sigfff Rap (£)e =" Ev (z) (62)
Rop(x) = f JI Top(k)e = Tare(x) (6D)

By use of the Fourier transform relationship, Batchelor demonstrated
that Fuﬁ ig a second-order tensor and obtalned & number of 1ts proper-

ties., Thus, for example, raﬁ is complex, in general, with r a = Iﬁﬂ*:
and the diagonal elements Ty, are real; also, FaB(iE) = rBa‘£)°

It ig of interest to observe that these same properties result lmmedl-

Lim &x°
ately from the identification of ., - QGQB* with raB' Thus
Qu@g* is complex, in general; QaQe* equals [QQQB*]*; and Q.Q * 1is,
of course, real., Furthermore, since Qu(-k) = Qg *(k), Qa('E)QB*(”E)

equals Qaf(E)QB(k); hence rqﬁ('E) = Pgaﬁk)-

The digtinction between cases where raﬁ 18 real and cases where

it is complex may be given a physical interpretation. The product
QGQB*, and correspondingly FGB, is seen to be real when the condltion

equation (4) is satisfied. This implies that the cosine wave and sine
wave assoclated with wave number X are polarized in the same plane.
The alternative conditlon where Q‘CLQ’B*J and hence rcx,B’ are complex

implies polarization of corresponding cosine and sine waves In different
planes. The velocity pattern of such a pair of waves is qulte inter-
esting: successive veloclty vectors along a line in the direction of
the wave normal k turn progressively about this line in spiral fashlon;
the tips of the vectors trace out a helical curve on a cylinder of oval
cross sectlon.

Energy spectral density. - Bach of the diagonal elements rll’

oo, and Tzz of the spectrum tensor raﬁ may be interpreted as an
energy spectral density. Thus, according to equation (6b)

2378
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$ ) — A
, R,1(0) = u.lz =ff f I‘ll(g)d'c(_l_«:_) ; therefore
4 ’ >

the differential %fildf(g) represents the contribution to the kinetic
energy component % ulz per unit mass made by waves with wave number

within the range dT(k).

8LE2

One-dimensional gpectrum. - The elements of the three~dimensional
gpectrum tensgor are not directly measurable; they may be obtained by
taking the Fourler trangform of the measured correlation tensor. A hot=~
wire probe placed in the moving stream wlll, however, develop a fluctu-
ating output voltage whose (one—dimensionals frequency spectrum (refer-
ence 7) is related to a diagonal element of the three-dimensional gpec-
trum tensor. Thus by equation (6b) the contribution to the mean square

velocity component qa? (=Ryq(0)) from all waves with wave-number com-
ponents in the direction of the xj-axis between ‘kﬂ and Ikll + ldkﬂ
is

] N y '
’ Fo(ky)dk = 2(f ﬁwdkzdk5> dky; (7)

the factor of 2 accounting for suppression of negative values of k.
The function Fa(kl) 1s the one-dimensional spectrum corresponding to
the veloclty component gq,; the values o =1, 2, 3 correspond respec-

tively to the longlitudinal and two lateral spectrums. The particular
spectrum obtalned depends on the arrangement of the hot-wire probe
elements.

EFFECT OF STREAM CONTRACTION

Consider now .that the turbulent velocity pattern 4y, 9o, q3 is
carried along by an inviscid general stream with velocity U(xl)v in the
x;-direction. Consider also that dl, 4ps Q3 are so small that thelr

effect on the streamlines may be neglected as the flow traverses a wind-

tunnel contraction. The contraction will, however, distort the shape

of fluid elements. (See fig. 1.) The vorticity distribution will be
* forced to alter accordingly to conserve the circulation about each
element. The net result will be an altered_gattern of turbulence. Each
plane wave (Fourier component) Qp, Qn, Qze'="% will, in fact, be
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altered independently under the linearizing assumption to be made; the
over-all effect on q;, dp, 4z can be obtained by the summatlon expressed

by equation (1). It thus suffices to consider the effect of the contrac-
tion on a single representative plane wave.

Effect of Contraction on Representative Plane Wave

Velocity and vorticity at upstream station. - Designate by A a
reference station upstream of the contraction and by B a reference
station downstream of the contraction. (See fig. 1.) Iet a typical

Fourier component (plane wave) of the turbulent field q, (o =1, 2, 3)

at station A YDe represented at time t = 0 by
~ A« A (k.
Gy = g el (kex) (8)

This wave, equation (8), is supposed to be carried along by the maln
gtream with velocity U,

The vorticity ®, 1s obtained from the curl of equation (8) as

- A Z A_1(k-x)
Wy =1 €opylpdy 07\ =2 (9)
B,y
0, if any pair of subscripts are equal
where aaﬁy =< 1, if afy are in cyclic order

-1, if afy are in anticyclic order

Digtortion of a fluid element in passage through contraction. -
Suppose the contractlon is such that the stream velocity U 1s lncreased
by a factor 1, between stations A and B while the breadth and

height of the tunnel are reduced by factors 1, and 1z, respectively.

(See fig. 1(a).) In traveling from A to B an initially cubical
element of fluld of edge D will be distorted into a parallelepiped of

edges 11D, 13D, 1zD (see fig. 1(b)); a particle in the element originally

(t = 0) a vector distance x from a corner particle will finally (t =t)
be found a dilstance & from the corner particle, where § 1s related
to x by

2378
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£1 =13 |
E2 = 12%p $ (10)
€3 = 13%3

-

In this argument the modification of the streamlines due to the turbulent
velocity fluctuations has been neglected. This implies that the relative
displacement of two adjacent particles due to the superposed turbulent
motion is small compared with the displacement due to the tunnel contrac-
tion. This key assumption, due to Taylor (reference 2), linearizes and
vastly simplifies the problem. The limitatlons imposed by the assumption
are dlscussed later under "Decay Considerations.

The velocity.ratio 17 and the lateral and vertical contraction
ratios iy and 13 are related by the continuity condition

0l1ll5 =

where ¢ 1is the ratio of stream densities at stations B and Aj; the
density is congidered uniform at each station In accordance with the
initial assumption of negligible turbulent density fluctuations.

Vorticity at downstream gtation. - The vorticity is carried along
by the flow, the fluid elements undergoing the distortion pictured in
figure 1(b), to the approximation used. During the motion the strength
changes in such_a way as to maintain the constancy of circulation of the
fluid elements.® The changes are expressed by the equations for the
trangport of vorticity in the Lagrangian form, due to Cauchy (see

- reference 8),
ZI)B:(JZ(T)A_SEE

a

lThis statement is exact for the postulated invisgcid fluid. The
modification produced by the diffusive effect of viscosity, in the case
of a gas, becomes appreciable for the smaller eddies or higher wave
numbers; for this analysis a criterion for neglect of viscous effects is

vk2<<|aU/ax|. (See "Decay Considerations", equation (43).)
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where o 18 the density ratlo between statlons B and A, and the deriv-
atives BEG/BXB express the effect of the fluld distortion.t Evaluation

by means of the distortion equations (10) ylelds simply

aa? = GZG&EA h

or, in expanded form

~ B ~ A
) olldi

(11a)
a')zB = UZZ‘T)ZA
032 = 01.835"

These equations relating downstream and upstream vortlclty embody the
entire dynamics of the contraction effect. The equations are not limited
to the plane sinusoidal waves dlscussed earlier, but apply to any (weak)
vorticity distribution whatsoever.

The above derivation of the vorticity changes 1s substantially in
the form given originally by G. I. Taylor (reference 2) for the case
o = 1 (incompressible flow). In order to assess the influence of the
8implifying assumptions a more general derivation based on the Navier-
Stokes equations is given in the section entitled '"Decay Considerations”.

By virtue of equation (9) as applied to (1la) the vorticity at
gtation B 1is obtained expliclitly as

B,7

where, it will be remembered, x 1is the radius vector to a fluld particle
at time t = 0 when the fluld element is at station A In the moving
coordinate system of figure 1(b). The corresponding vector to the
particle at time t = t, when the fluid element 1s at station B, 1s &
in that figure. When equations (10) are used to express X in terms

of &, the exponential k.x Dbecomes, in expanded form,

lThese equations refer to axes moving with some fluld particle
rather than axes fixed ag in reference 8; the form of the equations 1s
unaffected.

2378



8LC2

NACA TN 2608 15

ki&q . koE o . kzE3
5 il 13

kx =

The right-hand side may be expressed as %-§, where

ky kp kg
W = e e o
— zl’ Zz’ 13
defines a new wave-number vector.

Velocity at downstream statlon, general cage. - The velocity dis-
tribution whose curl in the 51, s, €z system 1s given by equation (llb)

and which satisfies continulty is found to be expressible in the form

a-aB - Q@Bei}_'g_ (12)

with

; N 86 Kaky
3L = l; zgj £ Ba B (13)
(I Zﬁl

where wx is the magnitude of the wave-number vector x. This result
is the general solution for the contraction effect on a single plane
wave.

Equations (12) and (13) admit of a simple (but not obvious)
geometrical interpretation: traversal of the gtream contraction alters
the initial plane wave, equation (8), so that its wave-number vector

‘ ki kp ks
k= (li ko, k3) is transformed 1nto/1 =:7zy igy ig and its amplitude

vector (QIA, QZA, QSA) is transformed into the projection of

(Q18/11, QzA/15, GA/1z) on a plane normal to the new wave-number
vector X.

Velocity at downstream station, axisymmetric contraction., - In
cagse the gtream contraction is axisymmetricl a considerable simplifica-
tlon results. The condition for axlsymmetry 1, = 1z, with use of the

continuity equation (2.2), reduces equations (13) to

lA contraction such that gll cross sections of the tunmnel are
slmilar, whence 1, = 1z, 1s termed axisymmetric; the sections need.not

be circular.
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B R

r ~
5B _L |3k, Qkykp (1-€) .
2T |% et | | (14)
| 1 2 T X3
3B _ 1 (gA, Qkyk5(1-8)
3 T |8 2 2 2
2_ 61:1 +k2 +k3_ J

where €= 122/112.

The considerably greater complexity of equation (13) is perhaps obscured
by the purposely expanded form of equation (14).

If the initial wave normal k is perpendicular to the (longitudinal)
x)-axis, the component k; vanishes and equations (14) reduce further to

=g = 7
&P = &

Q8 = GP/1p (15)
%P = &1 ]

The same equations result when QIA may be neglected in comparison with
QZA and QSA, that is, when the amplitude vector 1s substantially normal

to the xl-axis. Equations (15) state that an axisymmetric contraction

defined by 17, 1p alters these waves by a factor of %;

1
in the longitudinal velocity component and a factor of TE in the lateral

velocity components. These equations apply only to particular types of
waves; yet when the contraction effect is later integrated over the random
aggregation of waves representing isotropic turbulence the over-all
results are found not to differ greatly from the simple factors

L and 2;, respectively.
i1 iz

The same factors were obtained by Prandtl (referencell) for other

special disturbances: the factor éh. from energy considerations for
g 1

[
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. ] 1
purely longitudinal disturbance velocities, and the factor T from momen-
‘ 2
tum considerations for a rotating cylindrical element of fluld with axis
normal to the stream.

Effect of Contraction 6n Spectrum;anﬂ Correlation Tensors

- BEffect of contraction on correlation tensor. - The analy81s herein
leads first to the changes in the spectrum tensor FGBA(k)*'F af (x)

Then the correspondlng changes in the correlation tensor may be
.obtained from the Fourier transform relationship, equation (6b):

Ryg (z) =f f ﬁaBA(k)e_iE°£&t(_1§) S (162)
Rag® (r) =fff Top® (x)e ™" Za (x) - (16D)

In succeeding paragraphs FGSB(E) will be determined in terms of the

initial spectrum tensor FaﬁA(E) for various casges.

Spectrum tensors at upstream and downstream stations in terms of )
the Qg. - In an earlier discussion the Fourier coefficients Qe were’

chosen so as to define a field of turbulence confined to a large
parallelepiped of volume T, and vanishing everywhere outside; for this

3 ) .
case iif‘Bi Qagﬁ was to be ldentified with the correlation tensor

raﬁ' For station A upstream of the contraction it will-be'convénient'

to specialize this parallelepiped to a cube of edge D. Such a cube
will, however, be distorted into a parallelepiped of edges 11D, 15D,

1zD Dby the stream contraction by the time it reaches station B down-

stream., (See fig. 1(b).) The spectrum tensors for stations A and
B, respectively, are therefore

Togh () = L 8’; 0t (00" (x)
> (17)
Poo = m s om0 B
171512D _
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Evaluation of spectrum tensor at downstream station, general cage., =

The identifications made in the last paragraph allow the spectrum tensor 4

to be evaluated at station B in terms of the spectrum tensor at

station A and the parameters 1, ls, 1z defining the stream contrac- »
A 1kex

tion between stations A and B. For a single plane wave ad5= éa e ==,

which is transformed by the contraction into aa? = éupeilfé, equa-
tions (13) give

Qg £
~ B I - B Bka e
@ =1 e - == &
1% B Zﬁ‘)t
In the Fourier integral ﬁafx‘is to be interpreted as dqdé, QGP as
dan, QdA as QdAdT(E), and Qap as Q.Pdt(x). Accordingly
11150 Qglkgk
B 1°2%3
o = 123 o b > B pe (18)
o 2
B ZBX .
since 17lplz = dv(k)/av(x). Thus

2, 2

B B*  hlz ls e QM ikp A kyke QPR kykekakp
= — % - D 22 7 g2 3 27 2k
7,0 14 4 7 *®

2

The corresponding relation between the post-contraction and precontrac-
tion spectrum tensors is, by virtue of equations (17),

(19)
T Lilgls A § <I‘on7A(_1£)k7kB _Typt ) kyke N rySA(E)lgyk‘gkzkﬁ>
ap =TTl apg \&) - 2.2 2.2
a’f 7.5 [ Ty % 1,715
where k 1s related to x by
ki, ko, kz = 11%y, Ioky, lzz (20)

Speclal case: axisymmetric contraction but arbltrary initial
gpectrum. - When the contraction is axisymmetric (12 = 23), the equation

of continuity in the form
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Z k7I‘75A =0 , | (21)
y

may be used to simplify equation (19). The result may be written

@’miAkB + rlBAka)kl(l-e) T3k, %ic e (1- 6) 2
+

TR BT
T xn) = T k) +
o lalp | = ek ? + kP + kgP (eklz A k3z)2

where the ratio e&'= 122/212; for a large speed gain in the contraction
g<<1,

Special cage: axisymmetric contraction, isotropic initial spectrum.
A further simplification occurs when the turbulence at station A is
isotropic. -In that case, the spectrum tensor T, B(x) downstream of
the contraction can be expressed explicitly to w1 hin an unknown multi-

vplicative factor G(k). This results from the fact (reference 3) that

(k) must then be an *sotropic second-order tensor; the isotropic
property together with the continuity condition, equation (21), requires
raﬁA(k) to be of the form

raBA(g_) = G(k)(kz«?‘)@ - kgkp) | (23)
where
s =J1lfor a=28
ap 0 for 0074 B

The right-hand side of equation (22) may be evaluated by means of
equation (23)., The diagonal terms reduce to relatively simple forms:

a 2 2) .4
' l1lz (k -k )k.
rllB(.’i) = G(k) (24)
212 ' 2 2 o\ 2
: 8kl + kz + ks
2 2.2 B (1. 220 - i2) (1o )2
r22}3()_0 =2 qq) | x® - kp? - 1 Xz (1-¢) 1 kg ( 17) (1-¢) (o5)

+
z 2 2 / 2
12 ek " + kpo + kg (eklz + kp? 4 ksz)

(22)
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and rsgB(E) is obtained from FZZB(E) by replacing k, by kz and
vice versa. The relation, equation (20), between k and x applies

here.

One-dimensional longitudinal spectrums., - If the form of the inltial
spectrum tensor I‘agﬂcgy’is known, the corresponding one-dimensional

gpectrums Fdé(kl) can be calculated, according to the defining equa-
tion (7) as applied at the upstream station A:

“© .
A A
Fo* = f Pag™ (ky, kp, kz)dkodkz (26)
-00

A particular case of isotropic turbulence is of special Interest ‘
(reference 4): in equation (23) for raﬁA(E) the function G(k) 1is

taken to be N(kZ + 92)79, where N,y are constants. Then

oA N(kzz + k32)
11 =
3

and after integration

N
2 2
(k 1 + Y

This one-dimensional longitudinal spectrum is of the same form as an
empirical relation obtained in reference 5 for that of lsotropic
turbulence in the initial period; this agreement is the special virtue
of the form assumed for G(k).

(k) =

The one-dimensiocnal lateral spectrum functlons corresponding to
the same G(k) are readily evaluated; they are

7N (31«:12 + 72)
2(1\:12 + 72)2

The equality of the F, and the Fz functions results, of course, from

A ) = Fh(xy) =

the isotropy of the turbulence.

The effect of the stream contraction on these one-dimensional
gpectrums is found by employing the post-contraction value of I‘aa,

. 2378
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that is, the value FGGP approprlate to the downstream station B.
Since Fdﬂ? ls a function of the local wave-number vector x at
station B, the equation corresponding to (26) is o

o
= qu\ r B( x,, % )dn_dx
o ANy 5 Xoy Xz MMy

which is a function of LI

For performing the integration and making later comparisons of
spectrums 1t 1s convenlent to transform from xi, g, xz to ky, ko,

kz, where

"y = kp/1
"2'=.k2/7'2
3 = k3/l3
and to define FP(ky) = 171 FP, such that I OF@B (kp)dky = f QFadel;
thus ’
F (k) = 212223 ]Z‘S:t ];2 1;2)@1«:2&1:3 - (27)

The spectrum tensor elements raa, following an axisymmetrlc contraction

have been evaluated in equations (24) and (25). With these values inserted
and G(k) sepecified as before, the integrations of equation (25) are best
effected in polar coordinates. The results are expressed most simply in
terms of a "normalized" longitudinal wave number kl/y as incorporated

in the two parameters

2
.5
S=—2——+l
A
2 2
gkq” - k
t = L l-l

The final result for the one-dimensional longitudinal spectrum following
an axisymmetric contraction (Ilp = 1z) is
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B _ 2mN 2t ss) s .
F P (k) = 224 Lo == —_
17 (k) 5y 344t +t8 4 2 +(2+4s+2t+st+ T 108 ( T
(28) )
&
The corresponding result for the one-dimensional lateral spectrums >
following an axisymmetric contraction is
(29)
- 2 -
FzB(kl) = FSB(kl) = '—————272;1:21:2 <3Bs§ L 4(1-5)(5-1){ 2—:?’- + st;t logg (B—it-) + %‘;G—s-[:es;m + (5%)538%) log, (Ei—t)ib
and for €<<1 (large speed gain) a simple but very close approximation
is
2/.2
1l + 2k
FB(x) = = 1"/ + 0(e, € 1n €)
2 1 07 22 5, 2\2 )
12"y (1 + k2 /y
(The corresponding approximation for FlB(kl) is not simple enough to
warrant noting.) The parameters 19, lpg =1z and € = 122/112 are ~ »
related to the initial and final Mach numbers of the main stream by the
equationg
2 <MB)2 5+ M%)
117 == —
Mo/ \5 + M52
2 3
1,° = —M}S — > (30a)
5 + MA
4
(MA)3 5 + Mp@
€ = |7 —_—
2
MB 5 + MA J
For incompressible flow (MB, My - 0) +these reduce to
-
_ 5 =1/2 }
1, = 1, / (30b) .
e =17
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These post-contraction spectrums, equations (28) and (29), are com-
pared with the initial spectrums in figures 2 and 3, respectively; the
comparison 1s based on an assumed initial stream Mach number of 0,05
(station A) followed by an axlsymmetric contraction such that the final
Mach number is 2.0 (station B); the corresponding parameters are
1) =29.8, 15 = 0.382; ¢ = 0,00016. Consider first the longitudinal

spectrums, figure 2. Normamlizing factors are incorporated such that

the areas under the two curves, if replotted on a linear scale, would

be the same; this normalization serves to differentiate changes in

shape from changes in amplitude. The figure exhibits a rather striking
distortion of the spectrum after traversing the stream contraction:

the peak sgpectral density is shifted from zero wave number to kl/y = 1,4

along with a general shift of density to the higher wave numbers. Agso-
clated with this change in shape is a reduction in amplitude by the

factor uBZ/qAZ, qu and u.B2 being the respective integrals of the

spectral density curves. These integrals are evaluated in a later
gection.

The corresponding comparison for the lateral one-dimensional
spectrums 1s made in flgure 3. In this case the axisymmetric contrac-
tlon has made very little distortion in the spectrum. There is again
& change in magnitude (this time an increase) in the ratio
;*2/;73

B /YA »

The changes in magnitude (that is, the changes in ares under the
Spectral density curves) correspond to the changes uBz/ﬁAz and 4
TBZ/VAZ in the mean square components of turbulence and are, at least

qualitatively, well known. The predicted changes in the shape of the
spectrum curves are apparently new.

In the above comparisons both pre-contraction and post-contraction
spectrums have been expressed in terms of the pre-contraction longi-
tudinal wave number k;, whereas the local post-contraction wave number
is %y = kl/Zl. Consider, however, a representative longitudinal wave
which has the form cos kx at station A and ocos n{& at station B.

If x and E are identified with the respective distances swept in

time t by the moving waves over stationary hot-wire probes at
Etations A and B respectively, then kyx =k U,t and 1 E = nTpt =
-+ 17Upt. Thus the (temporal) frequency seen by the hot wire in both
cases 1s klUA/er° The comparison based on ki therefore constitutes,

in effect, a comparison of the time gpectrums that would be seen by
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gstationary hot-wire probes, in contradistinction to the space spectrums
discussed in the earlier parts of the paper. :
Effect of Contraction on Mean Square Veloclty Components
for Isotropic Turbulence

The mean square veloclty components of the turbulent fleld may be
identified as the diagonal terms of the correlation tensor Raﬁ(g) with
r set'equal to zero. Thus

u? = Ry41(0)

Ho

Rz3(0)

where u, v, w have been written for 4, 45, 4z, respectively. The

evaluation of these means 1s much less laborious than the evaluation
of the general correlation tensor. In particular, the evaluation of

the ratio of the means uBz/qu, etc., may be made when the initial

turbulence 1s specified to be lsotropic but no further details of its
gpectrum are known. These ratlos will be calculated in the following
paragraphs.

Evaluations of u2 and 2

equation (6)
R)1A(0) = 1wy = fffrllA(_ls)d“(E)

For isotropic turbulence I‘mﬁ has the form speclfied In equation (23),

w2 =fffc-(k)(k2 - X72)dv (k)

where G(k) is an arbitrary function. It 1s convenient to transform
to spherlcal polar coordinates:

at upstream statlon. - According to

whence

2378
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\
» kl = k cos O
. : _ ko = k sln 6 cos ¢
, - | ‘f ‘ (51)
kz = k gin 6 sin @
| dt(k) = k% ein 6 46 d¢ dk
~ . .
@ Then oo ot -
up? = k4G (k)dx do sinS0 d6 (32)
JO 0 0
For the present purpose the function G(k), which, together with the
condition of isotropy, defines the turbulence, may be left unspecified;
the integral involving G(k) will cancel out in forming the ratio
. ' uBz/qu. Let this integral have the value H; then
- 8
: 2 = =
‘ up~ = 3 7H

By virtue of the assumed isotropy

2

‘VAZ = WA = wH

[4Y] fos)

Evaluation of ratio of u2 at'downstream.station to u2 at

upstream station. - The mean value QBZ is obtained from an intégration
involving the spectrum tensor after the latter has been transformed by
passage of the flow through the tunnel contractlon, according to

equation (16b)
R11°(0) = Ufrll (x)dr (%)

For the present case, where the spectrum tensor at station A is
aggumed igotropic and the contraction is ax1symmetrlc, the transformed
~ tensor I‘llB(x) has been determlned in equation (24). Thus

o - zlzz G(k)k - ky )d'c(z)

2
2 2



26 NACA TN 2606

Because of the unspecified function G(k) it is convenlent to change
the variables of integration from the components of x +to the components
of k. In other words, a transformation is made from | the "wave-number
space" of station B to the "wave-number space” of station A. The trans-
formation follows from the Cartesian relations

-
aT(x) = dx dw,dx, 3 (33)
dk; dlp dicg
T 1 1z
)

together with 1, = 1z for an axisymmetric contraction, whence

1 ﬂ k4G(k)(k2 -k ld'r(k)
- _.35 -

2
5k2+k2 +k3)

Again the polar-coordinate transformation (equation (31)) is made, with
the result

- b1

2 T
- 3
11 5 (e cos26 + sine)

0

—.-..__

The first two integrals occur also in uA (equation (32)), and they
cancel in obtaining the ratlo up /QA ; thus

— ki

2
ug” 3 sin%0 de

2
(¢ cos?6 + sin?p)

The final result may be written

Up 3 | -1 2-¢ 1
== + tanh™ +/I-¢ (34)
2| 1= 3/2
qu 417 ®  (1-¢) /

and an asymptotic expansion for small e is
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. 2 |
u .
2 - 32 1+§e+(1+s)1n-5-+o(621ne):|
Z2 41 2 R -
. up 1 :

Equation (34) gives the ratio of the mean square longltudinal
velocity fluctuation downstream of an axisymmetric tunnel contraction
to the corresponding mean square upstream of the contraction, when the
Initial turbulence is isotropic. The contraction is characterized by
an increase in the stream speed in the specified ratio 1, and a

decreage in the lateral dimensions in the specified ratio 1o; the

parameters 11, 1o, and ¢ = 122/112 are completely defined by the
initial and final Mach numbers of the stream according to equations (30).

8LEZ

The variation of «/uBﬁ/uAE with the speed ratio 1; 1is plotted
in figure 4 for two examples; in the first the flow is assumed com~
pressible with a Mach number 0.05 at the start of the contraction; in
the second the flow is assumed incompressible (M, Mp+0). The Mach

number gcale at the bottom applies bnly to the compressible case, the
Zi geale to both cases. The salient characteristic of the curve is

the marked reduction in the longitudinal component of turbulence with
Increasing speed ratio 17,

Compressibility'is seen to have but a secondary effect, which is
appreciable only at supersonic speeds. Note (equations (305 and (34)) -
that with Zl as the independent variable, the effect of compressibility

appears only in the parameter e. The physical gignificance of ¢
follows from the definition of Zl as the speed ratio provided by the

contraction and 222 as the area ratio of the contraction (in the
axisymmetric case considered), with ¢ = 222/212. For supersonic final

speeds it 1s more proper to speak of a converging-diverging nozzle than
a contraction, the term "contraction having been retained herein
primarily for reasons of past usage.

The basis of the compressibility effect may be summed up in the
following way. The influence of an axisymmetric stream contraction
arises from distortion of the fluid elements, as described by the
parameters 1; and 1. (See fig. 1(b).) These parameters are

related by the continuity condition 011222 = 1, where ¢ 1is the

density ratio. Thus compressibility, in allowing o +to deviate from
unity, changes the relation between 17 and 1, somewhat, and con-

- sequently modifies the contraction effect.
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The graph of equation (34) in figure 4 is primarily for illustrative
purposes; a Torm more useful for engineering applications 1is glven in

figure 5. The single curve provides the variation of /\/ng/hAz with
both 177 and €; 1, and €& may be determined from the initial and

final Mach numbers by means of the simple relation (30a).

2 at downstream station to v2 at

upstream station. - The value of VBZ results from an integration

involving the transformed spectrum tensor, according to equation (16b)

Bz®(0) = vg? f f f gD (1)a7()

For isotropic initial turbulence and an axisymmetrlic contraction the
transformed spectrum tensor TooB(x) has been evaluated in equation (25).

Thus
2 2y 2 2y 212 2 2
1315 )| - w2 2k, “ko%(1-¢) kp“ko® (K% - k1) (1-¢)
2.2 G(x){ } A S R RE: dt(x)
€ + + 2 2
2 Iy 1 2 3 (skl + k" 4 kg )

Again it is convenient to transform from x-space to k-space (equa-
tions (33)) and to introduce polar coordinates k, ¢, and 6 (equa-
tions (31)). The integrations with respect to k and ¢ are readily
disposed of, with the result

Evaluation of ratlio of

2 _
'VB =

7 7 .
3 2 5 2

sz = -—H-z- 2n f sin’e do - 2n(1l~¢) f Sin29 o846 dg + n(l-s)z f ginv8 cog®d 46

17 5 A sin“6 + €& cos®8 ain26 + £ cosZs

-]

where H = k4G(k)dk, as before. Upon carrying out the integration

0
and dividing by v,° = %-ﬁH there 1s obtained finally

v _ 2 _
B _ 3 2-€ _ € /ﬁrtanh 1

z et 1t (1-¢)3/E

1-¢ (35)
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For small € this has the asymptotic expansion

2

-

B .3 [2+s+lezlne]+o(sz)
Z 81,7 2

Equation (35) gives the ratio of the mean square lateral veloclty
fluctuation downstream of an axisymmetric tumnel contraction to the
corresponding mean square upsiream of the contraction, where the
turbulence has been assumed to be isotropic. The variation of

A/'TBZ/VAZ with the speed ratio 17 1s plotted in figure 4, which
already contains the graph of N/uBZ/uAZ discussed earlier; again the

two cases are lncompresgible flow and compressible flow with an initial
Mach number of 0.05. For 1721 and incompressible flow, the lateral

component of turbulence is seen to increase steadily with 11, in

marked contrast to the decrease exhibited by the longitudinal component.
The curve (of the lateral component) for compressible flow begins to
differ sensibly from the curve for incompressible flow for downstream
Mach numbers above 0.3; above sonic speed compressibility 1s seen to
effect a complete reversal of the curve. The over-all effect of com-
pressibility on the contraction effect 1s thus much greater for the
lateral than for the longitudinal component of the turbulence.

The graph of equation (35) in figure 4 is primarily illustrative;
a form.more ugeful for engineering applicationsg 1s glven in figure 6,

The single curve provides the variation of AITBZ/YA with both 1y
and &; 17 and & may be determined from the initial and final Mach
numbers by means of equations (30).

DECAY CONSIDERATIONS
Criterions for Negligibly Small Decay

The bagis of the present analysis of the contraction effect is
embodied in equations (1lla) relating the pre-contraction and post-
contraction vorticity distributions. The simplicity of this result |
and its derilvation arises from the neglect of the turbulent decay; by

- decay is meant the viscous dissipation and all the (nonlinear) inter-
mixing processes of the eddies which together cause the mean turbulent
Intensity to diminish with time. The postulation of an inviscid fluid
eliminagted the viscous disslpation, and the limitation to very weak
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turbulence eliminated the intermixing processes. (While there can be

no dissipation in an inviscid fiuid, the Intermixing processes ordinsarily
aggociated with decay will occur.) In order to assess the influence of
these assumptions equations (lla) will now be derived in a more general
fashion with the Navier-Stokes equations as the starting polnt. For
simplicity the fluid is taken to be 1ncompressible, since the maJjor con-
clusions are unaffected thereby.

General formulation of changes in vorticity. - By rearrangement and
cross differentiation to eliminate the pressure term (reference 8, p. 578),
the Navier-Stokes equations can be transformed into

Day dq ! oq ! dq7!
:—S_E— = w) 8_-—3{1 + wo rxz 0)3 g'— + VV OJ (36)

and two similar equations, where  =wq,ws, wz 1is the vorticlty and

a' =a1', do', 43" 1is the resultant velocity. Now let g' be the sum
of a stream velocity U, V, W and a turbulent velocity field

4 =9y 9, 935 also, let curl U, V, W= 0, so that @ 1s Just curl g.

Then equation (36) becomes (in tensor notation)

Dy U oq 2
= @ BXB + g axB Wy (37)
I )

Contraction Decg&

and there are two similar equations. The first set of terms on the
right-hand side is identified as the contraction effect, the second
set as the decay effect. First the decay terms will be neglected in
an attempt to recover equations (lla); then the neglected decay terms
will be examined and criterions for thelr neglect arrived at.

Neglect of the decay terms. - Equation (37) minus the decay terms.
reads, in expanded form,

D o(U+q7) 8(U+ql) 5(U+ql)
5:;—:0:1—-3———— 0)2—&;—+0)3—'&';“ (38)

Dt
following the fluid motion. Now consider a line segment 8x;, dxp, 8xxz

following the fluid motion: 1ts Lagranglan derlvative can be shown to be

Tn this and the earlier equations 2 is the 'Lagranglian' derivative

2378
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Ddx. d(U+aq) o(U+aq) 3(U+a1)
1 1 1 1
= = 8xy ——Yxl——' + sz _-85{?— + SXS —BE%—_ (39)

and two similar equations. It can be seen that a solution of equa-
tions (38) and (39), together with their companion equations, is given by

Obl, 0)2, (DS ~ 63{:1, 83(,2, SXB

for all time +t; this result is well known. Now complete the neglect of
the decay terms by omitting the terms in 47 1n‘equation (38) and corres-

pondingly in edquation (39). By this neglect the turbulent perturbations
of the flow streamlines have been suppressed: +this .can be inferred from
the revised equation (39). If the particles are at station A at a time
t = 0 and reach station B at time + = t, there results

oA 5. A
o 6x1 _
. ~ BXiB 5XZB
and two simllar equations. But X is Just 13, I is Zz,
le 8x2
- is  1z. Therefore equations (1la) have been recovered for the
X3

incompressible case (density ratio o = 1).

Consideration of inertial decay terms. - In equations (37) to (39)
the decay terms not involving v are the inertial or intermixing terms.
These are seen to be nonlinear. The condition for thelr neglect is
evidently " ' ‘

“p %[;ig (40)

0g %I«

and two gimilar conditions between 4o and ‘V, az and W, regpectively.

In a contraction like that of a wind tunnel the dominant velocity

gradients will be %%,~g§,-gg, and these will be of the same order of

absolute magnitude. A sufficient condition to replace (40) i1s therefore

S| fou : o
gx_ﬁ-<<§;; 7(41)

that is, all of the turbulent veloclty gradients are very much less
than the axial gradient of the stream velocity. This is essentially the
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agsumption underlying the distoftion equations (lO), which led directly
to the vorticity changes (1la) in Taylor's method. *

In statistical terms an approximate inference from equation (41) .
ig, for isotropic turbulence,

Bu)z oU
<<
2
But by definition of A +this may be written pt
N w2 U
u
x <<Fx (42)
The 'microscale' N may be interpreted as a sort of average eddy diameter
welghted in favor of the smaller eddies. Equation (42) may be accepted
~ag a practical criterion for the neglect of the inertial decay terms,
equivalent to one of the two assumptions underlying equation (10). The
other assumption, neglect of viscosity, is considered next. .
Congideration of vigcous decay term. - The viscous decay term in
equation (37) i1s the term containing v. This term is linear and so will v
affect individual plane waves separately without mutual Interference.
The magnitude of the term may be estimated to a sufficient approximation
by considering a wave carried along by the contracting stream and
neglecting (for this term only) the distortion of the wave imposed by
the contraction. Thus a component of the wave may be written
i(kex - kUt
W] =5216‘1(“‘— 1 )
Then, if the inertial decay terms of equation (37) are negligible, the
U ou 1i)
equation reads, with | = S;— << |55
2 3 1
Doy U 2
S = @1 g—xl+vv w7
=W U + v (k% + ko2 + k%)
"l TV 2 3 01
»

il

oU 2
“’l (&-]—_ +vk) .
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Accordingly, viscosity may be neglected for that portion of the gpectrun
which satisfies the inequality

U
B

vi? << (43)

In the 'initial period! of decay if the inertial decay criterion (42)

is satisfied the major part of the spectrum will satisfy (43).

Rough Estimation of Mutual Effects
of Decay and Contraction

When the decay effects are not negligible compared with the con-
traction effects (see criterion developed in the last section) the
theoretical basis of the present theory of the contraction effect is
violated. - Because negligible decay is more the exception than the
rule, there 1s considerable incentive to attempt to apply the theory
outside the valld range by means of assumptions concerning the simul-
taneous effects of decay and contraction.

Suppose, now, the decay and contraction are considered to occur
alternatively in small steps, starting from isotropic turbulence. Each
stream tube is considered to contract stepwise: between steps there is
decay without contraction; at each step there is a sudden contraction
without decay. Let the change in speed ratio per step be le, the

reduction in u2 due to decay be (du2)p, and the reduction in u2
due to contraction be (duZ)C. Express the effect of decay in the
absence of contraction in the form ' M

2 ” .
o =D(1y), , (44)
2
bR
A /p

where Zl 1s a function of the time of travel (decay time) +, and

the effect of contraction in the absence of decay in the form

v\ - o) | (45)
u 2 : ‘
A Jc

The corresponding differential forms are
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(du2)2 D'(ll) )
u &
(§u2)c (o), (47)
= C(Zl) 1
u
The assumption is now made that equation (46) applies to the decay effect
per step and equation (47) to the contraction effect per step, the only
interaction being in the common uz.l The total effect per step is then
au? | €'(2y) . D'(2,) i
2 c(17) D(1q1) 1
u
whence upon integration the over-all effect is
z
u:
= = c(1y) D(1y) (48) .
2 N

That is, if the effect of contraction alone is expressed by C(Zl)
(equation (45)) and the effect of decay alone by D(17) (equation (44)),

then the joint effect under the assumption 1s expressed by the
product C(11) D(14).

Equation (48) is intended to provide a very rough adjustment of
the theoretical contraction effect C(Zl) to account for decay. This

———

2
Tt is known that in the 'initial' period of decay wi— ~ - u? dt,

u

1

Equation (46) amounts to replacing the -ué

2
-(u )decay onl
gidering the progressive deviation from isotropy.

on the right-hand side by

y5 Some defense may be made of this approximation, con-
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ad justment will be made in the attempt to compare the theory with experi-
mental results in which the decay effects are of the same order ag the
contraction effects, .

Equation (48) refers to the longitudinal velocity component u; an
equation of the same form is obtained for the lateral component v. For
both cases the function D(Zl) ig taken to be the right-hand side of

the empirical decay law (reference 9)

——

<
I
[

- _ = D(14) (49)

uA
D u
T 1.+ 0.58 LAA t(17)

[\V]

for isotropic turbulence in the initial period. The decay time (1)
in the formula is the time required by a particle of the main stream to
pass through the contraction, the initial velocity being Uy and the
final velocity 11Up

COMPARTSON WITH EXPERIMENT

There appear to have been no experimental investigations with which:
to compare the predicted changes imposed by a stream contraction on the
spectrum of the turbulence, or on the correlation tensor of the tur-
bulence. The available experimental data seem to be limited to measure-
ments bearing on the changes in the root mean square veloclty components.

- These data apply, moreover, to conditions outside the proper scope of

the present theory in that large decay effects are present. The experi-
mental data are therefore compared with & crude extension of the theory
in which the decay is allowed for in first approximation. (See pre-
ceding section.)

The most extensive data are those of MacPhall, (reference 10) which
in effect cover a range of contraction ratios from 13 =1 to 1y = 9.65

inasmuch as measurements were made at various stations along the con-
traction. Isolated points for particular contraction ratios were
obtalned from investigations made for other purposes by Dryden and
Schubauer (reference 11) and by Hall (reference 12). Only those points
were chosen for which the initial turbulence was indicated to be approx-
imately isotropic. In the case of reference 11, data for the case of
screens in the settling chamber were excluded because the final tur-
bulence level was sensibly indistinguishable from the residual noise
level. : ‘ o
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Tn table I are listed, for the three experimental arrangements, the
parameters used in the estimation of the decay factor (equations (48) “
and (49)). In reference 10 the initial stream veloclty U, and integral

scale of turbulence L, were given. In reference 11 the value of TUp .
- was given, and the value of I, was taken to be 0.05 feet, the only

gcale mentioned; it was not clear, however, whether this value of scale
applied with or without screens. In reference 12 the value of U, was

inferred from collateral information and is somewhat uncertain; the
scale I, was estimated from the dimensions of the honeycomb, In all

2378 -

three experimental arrangements the initial relative levels of turbulence
were specified. The decay time t of the turbulence was computed as the
time for a particle to traverse the contraction; the value arrived at
for Hall's data (reference 12) reflects the uncertainty in the

assumed Up.

Root mean square longitudinal velocity components. - The comparisocn
of the theory, including estimated decay, with experiment for the longi-
tudinal component of turbulence is given in figure 7. The theoretical
curve, in each instance, is the product of a value computed for con-
traction alone, neglecting decay, (obtainable from fig. 5) and a
value estimated for decay alone neglecting contraction. (See equa- PA
tions (48) and (49).) The agreement with MacPhail's data and with
'Hall's single point can be considered good. The agreement with the
Dryden-Schubauer point, on the other hand, 1s poor; a slight lmprove-
ment would result on correction for the spurious contribution of the
noise background.

Root mean square lateral velocity components. - Comparison of the
theory, agaln including estimated decay, with experiment for the
lateral component of turbulence is given in figure 8. There is com-
plete disagreement with MacPhail's data and Hall's single polnt, and
on the other hand, good agreement with the Dryden-Schubauer single
point. Thus there is the curious result that MacPhail's and Hall's
data agree well with theory for the longitudinal component and disagree
entirely for the lateral component, whereas the converse is true for \
the Dryden-Schubauer data.

Discussion., - The uncertainty both in the manner of estimating the
decay effect and in the data (table I) on which the estimate was based
i8 still far from sufficient to account for the discrepancies between
theory and experiment for the lateral component of turbulence. The
very large amplification found by MacPhail is particularly hard to
explain, On the other hand, the experimental data of the geveral
observers show considerable disagreement, especially when differences
in decay are allowed for. This disagreement would tend to cast doubt .
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on the validity of some‘bf the data; the disagreement may also be in
part a consequence, predicted by the theory, of possible differences
of the initial spectrums from each other and from isobtropy.

%
CONCLUDING REMARKS

The original aim of this paper was to provide a quantitative
explanation of the obssrved changes in the root mean square velocity
components of the turbulence of a wind-tunnel stream after passing

-through the tunnel contraction. The simplifying assumption of negligible

decay was made to make the analysis tractable, although the decay and
contraction effects are ordinarily comparable. The analysis on this
bagls disclosed, in addition to the above integrated effects, pronounced
changes in the spectrum of the turbulence. The changes in the shape of
the spectral density curves, as distinguished from over-all changes in
amplitude, would appear to be considerably less sensitive to modifica-
tion by decay than would the mean square velocity components. For this
reason, and because such spectral changes have not previously been dis-
cussed, the emphasis of the present paper has been placed most heavily
on these spectral effects,

In partlcular, it has been found that the one-dimensional longi-
tudinal spectrum for isotropic turbulence exhibits a rather interesting
change in shape downstream of the contraction; the center of gravity of
the curve of spectral density versus longitudinal wave number is shifted
‘gubstantially to higher wave numbers, the resulting distortion moving
the peak of the curve well to the right of its initial position above
the origin., The distortion is quite pronounced and would appear to be
readily amenable to experlmental obgervation.

The resgtrictive assumptionvof negligible decay largely defeats the
original aim of the paper. Nevertheless, for practical reasons an
attempt has been made to provide a crude extension to the theory in
which decay is allowed for in first approximation. With this approxi-
mation the theory has been compared with experimental values of the
contraction effect on the longitudinal and lateral component root mean
gquare velocity fluctuations. The agreement for the longitudinal
component is good, whereas there appears to be almost complete disagree-
ment for the lateral component, the experimental data themselves being
in conflict. It is perhaps premature to attempt any general conclusion.
For the present, the theory as augmented by the estimated decay effect

may be useful in wind-tunnel-design applications.

It is clear that the tunnel contraction effect on the components
of turbulent intensity cannot be represented by fixed fractional changes
independent of the character of the initial turbulence. Instead the
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separate factors for the longlitudinal and lateral components depend
markedly on the spectrum of the turbulence., For initilal 1lsotropy,
however, unique factors are predicted that, when decay is neglected,
are independent of the details of thq spectrum.
Lewis Flight Propulsion Iaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohlo, August 30, 1951

2378
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APPENDIX A - SYMBOLS
The following notation ls used in this report:

The subscripts, 1, 2, 3, refer to a rectangular coordinate system
with the l-axis glined with the axis of the main flow and directed down-
stream, the 2-axis directed horizontally, and the 3-axls vertically.
Separate systems are used with the origins at stations A and B, respec-
tively. (See fig. 1.) Vector and tensor notatlons are used inter-
changeably; for example, k = ky = (k, ky, kg), where o = 1, 2, or 3,

designates a vector wilth components ky, ky, and kz.

c(14) function defined in equation (45)
D(1;) function defined in equation (44)
D edge length of cube within which turbulent fleld is defined
© bagse of natural.logarithms
Fd; = Fl’ Fz, or FS
Fl one-dimensional longitudinal spectral density (see equa-
' tion (7)) '
Fy, Fx one-dimensional lateral spectral densities (see .equation (7))
G(k) function appearing in isotropic spectrum tensor
) .
H constant f k%a(x) dax
0]
Im imaginary part of

i= /-1

K, Ky, Kz = ky+k ', kotky?, k3+ks‘, respectively
k amplitude of k (= 1/k12+k22+k52)
k = kg = (ky, ko, kz) wave number vector (station A)

L longitudinal macroscale
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11, 1z, 13

stream velocity at station B divided by stream veloclty at
station A (see fig. 1)

gtream breadth at station B divlided by stream breadth at
station A (see fig. 1)

gtream height at station B divided by streanm height at
station A (see fig. 1)

Mach number of maln stream

amplitude of special isotropic spectrum tensor (see following
equation (26))

Qg = (Q1, Q, Qz) disturbance wave amplitude vector

dg = (43, 92, 9z) disturbance velocity vector
correlation tensor (reference 6)

real part of
magnitude of r = ~/ry2+rpl+rz?

o = (ry, ro, rz) separation vector of two correlated points

k 2
parameter in equation (28) (= _%E +1
(5 "l) klz
parameter in equation (28) (= —s -1
4

time
main-stream veloclty

475 995 4z disturbance velocity components

length of wind tunnel contraction (dlstance between sta-
tions A and B)

uged occaslonally in place of xy ,

2378
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X = Xq = (xl, Xy, xS) positién vector (station A)

raﬁ(E) gpectrum tensor (reference 3)

Y . constant in special isotropic spectrum tensor (see following
equation (26)) (y = 1/L) _

€ contraction parameter (= 122/112;\;86 fig. l)

Eapy alternating tensor defined after equation (9)

6 polar angle (equation (31))

xn magnitude of x (= 1/112+x22+X52)

Ay = (xl, %, 13) transformed wave number vector (station B);

(%, = kof1q)

E magnitude of & (__, ,/512+g22+§'32)

1=
I

E = £y = (&1, &, &) transformed position vector (station B)
(see equation (10) and fig. 1(b))

ZE: summation over o for o =1, 2, 3

5}

o gtream density at station B divided by stream density at
station A

T a volume

v vigcosity

P azimuth angle (equation (31))

o = wy = (07, 0o, wz) vorticity vector

R = Q= (Rl, Qo5 93) vector amplitude of vorticity wave

Superscripts:

A measured in vicinity of station A, upstream of contraction

B measured in vicinity of station B, downstream of contraction

* complex conjugate
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Subscripts:
A measured in viclnlty of station A, upstream of contraction
. B measured in vicinlty of station B, downstream of contraction

«,B,y,5 take on wvalues 1, 2, or 3 and designate tensor quantities
1,z2,3 speclfic values of a, B, 7, or ®
A symbol with the mark »~ above it refers to a single plane wave.

A bar over a symbol designates an average (usually a spatial average);
a bar under a symbol designates a vector.

2378
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APPENDIX B
EQUIVALENCE OF SPACE AND TIME AVERAGES IN STATISTICALLY STEADY,
HOMOGENEQUS TURBULENCE

The definitions of statistical homogeneity and statistical time
independence will first be made precise. Let F(x,y,z,t) be some
property of a turbulent field that varies in time and from point to
point; thus F may be the pressure, or any of the velocity components,
or a correlation of velocity components at two points of fixed separa-
tion, (x,y,z) being one of the two points. IFf, for all choices of the
property F, (a) the average of F over a time T -« ig independent of
(x,y52), the turbulence is defined to be statistically homogeneous; if
(b) the average of F over a volume V = «is independent of t, the
turbulence 1g defined, in the sense used herein, to be statistically
gteady or time-independent. The respective averages are supposed to be
approached uniformly, in the mathematical sense, as T or V,

" respectively, approach infinity. (A statistically steady or "stationary"
condition is defined differently in the theory of random processes.)

It will now be proved that if the turbulence satisfies the two
conditions (a) and (b), the time and space averages defined therein are
equal. In this proof no resort will be made to the "ergodic hypothesis”
of statlstical mechanics, which leads to the equivalence of the time
average and the "ensemble" average. The possibillity of the Joint
existence of the conditions (a) and (b) probably amounts, however, to
Just as fundamental an assumptlon. ' ’

The space average will be made over a paralleleplped of edges a,
b, ¢ and the time average over & time T, and then a limiting process
will be applied, The average of F over both space and time is thus

: ' T e b Ma :
= _ Lim
Fop = a,b,c,T>= g%g{f j j F ax dy dz 4t (B1)
' 0J0 JO JO -

Any order of integration is permissible, since the integration
limits are constants. If the time integration 1s performed first the
expression may be written :

s Lim o c (b T -
8,8 7 a,b,c,T zoog - Fdt)dxdydz
| o Jo Jo\Jo e
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By virtue of the postulated uniform convergence of the tilme and space
averages the operation e DAY be brought under the integral sign:

(2)

- Lim im 1
Fs,t— c*abcjjj< J Fd>dxdydz=ébc_wachJv“ F.bdxdydz

where F£ is the time average of F. But, by condition (a), f{ is
independent of x, y, and 1z, Therefore

Fy ¢ = Fy (B3)

Alternatively, the space integration and limiting process may be
performed filrst:

= _ Lim1 Lim Liml
Fs,t"T—W’E abc—mabcjjj Fdxdyd>dt_ J (B4)
0

where f; ig the space average of F. By condition (b), fs is
independent of t; therefore,

Fg ¢ = g (BS)
Fquation (B3) and (BS5) together state that
Fg = Fy = Fg 4 (86)

or the gpace average, the time average and the gpace-time average are
all equal.
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TABLE I - DATA FOR ESTIMATION OF DECAY
1 T L % 2
1 A A us
(ft/sec) | (£t) (sec) | (£t/sec)
MacPhail (reference 10)| 1.20 3.55 0.012 [0.19 0.149
1.60 3.55 012 | .34
2.55 3.55 .012 | .45
4,90 3.55 012 | .51
9.65 3.55 .012 | .57
Dryden~Schubauer 6.6 6.86 .05 [1.31 J114
(reference 11)
5.2 1.54 .025 [1.22 .046

Hall (reference 12)

2378



NACA TN 2606 | 47

)
. e
0
Ne)
o
Up
> H ?
Contraction >
(a) Tunnel geometry.
-
‘4—— Contraction - >
<Eynnel contour
B ix.g
Qa e ="%
D. |
~
E /1 ~ \\ | I
4 ~ — —— et —— ——— —
A A Ve S ~~CIIT T
\\\ 3
le— D ~~
7 ~~ £ _r
. \\\h_ - l2D
|.<___11D —>]
11U
U e
—_—
: _ <Tunnel center line — -

‘
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Figure 7. - Comparison of predicted axlisymmetric contraction effect with experiment for longil-
tudinal component of turbulence, with decay allowed for in first approximation. Initial
isotroplc turbulence assumed. .nd
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Flgure 8. - Comparlson of predicted axisymmetric contraction effect with experiment for lateral

component of turbulence, with decay allowed for in first approximation. Initial isotropic
turbulence assumed.
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